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AI,I'SEN-EFT.'ROS TypE ORDEB REITATIONS
DEtr'INED BY VECTOR, NOR,MS

CONSTANTIN p. NTCULESCU and DAN TUDOR VUZA

INTRODUCTION

. ,Thu pupose of this paper is to extend some concepts from the M-struc-ture theory of Banach *p*9* to the setting of nan-ach-spaces endowedwith vector norms. The main feature o{_ this ,pp-"ou"rr1. irrui it b;i"g-together facts from app_arenfly distincttheo"iesi's"cn-i, a - structu etheory^ on one side, ,and Banlch httice theor.v o"-in" otn"".Our paper is divided into 6 sections.
$s 1*3 have an introductory character. The problem area in thispaper can be viewed. as a part of .tire general t-heory -oi aur"*ntiors type

9"dJ" relations developed by the first autho";" t*-tniu ,6;;,-"s-tis devoted to a brief survey oj some basic facts in ttrat- tneory. il $ *we present those facts concerning vector norms and their duality trrui .iliu
be needed in the following s-ections. since we cannot give a sltisfactoryreference for the duality-of vector norms, we have"incruaea,-i;;ht
rea,cler's eonvenience, all details there.

The main concepts in the- paper are introducecr. in $ 4. Given a Ban
lach ry1c9 .B and an isometric f,ector norm 9: E .* *, whe*e .f is aBanach lattice, we may consider the following t'wo o"ae, i""raiio"*;f ;H:
sen-Effros tytrle :

r 4 r,,q y if and only if q(y) : E@) i q(y - n),
'n4u* y if and. only if q@ + n) < .q(p)v g@ + y) for every zeD.

- For. g 1 ll ll,_ tne 
^to-rm 

of P: o:re finds again the relations 4 r.and 4..n introduced b-v Alfsen and Effros l1l. Foi g : I l, the moduluiof a Banach lattice -8, one finds that bbtir <,..' uo,i (""^ coincide
l"tl ^f ", 

a relation of Alfsen-Efhos type introdu66'ct by the-t'iist;;til;in [10].
Yarious concepts associated with the above defined relations such

as coatratizers, projections, ldeals and summands, are discussed.throu-
ghout the section 4; in particula,r, the duality between irre oentrarizirs
9f^-5r.y Htry*ilfl-f .<on,r) ald (r,", (respectivefy <r".1 i. established;
nere g' denotes the dual veclor norm of.g.

{n $$ _5-6 we rearize the announced irnification between some re-sults from }f-structure theory an{ Banach lattice theory. mus, a resurtof culqingham, Effros and Roy [?] asserts that every i,o -summand in
a dual Banach space is weak' --ct6s6a. A resurt of Lux6mbfr.g;"d z*";
[14], [15] asserts that every band in the dual of a Banacn tattice with
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order continuous norqr is weak' - closed. Remarking that <,y-summands
and projection band.s are particular instances of our notion of an (,',c
sumfr*od, it is the purpos6 of $ 5 to give a general theorem which incld-
des both of the above stated results as partlbular oases.

In the same manner, the purpose <lf $ 6 is to give a unified version
of another couple of results: narnely, Behrend.s'result asserting that every
Banach space *trictr is an 4r-summand, in its second d.ual is weakly requel-
tially complete, and Irozanovskii's result asserting that -ev-ery Banach
tattibe which is a band in its second, d.ual is rveakly sequentially complete.
See [3] and respectively [14] tor cletails.

The first named author is much imlebtecl to Professor E. Behrends
for providing him with a copy of the monograph [2].

1. TNTLNINAIIII'S

we begin by listing some notations to be uiled in connection with
a Banach space .E :

1r, the identitY maP on E.

.B3, the closed unit ball in -D.

E', th.e dual Banach space of -8.

.,f 
", 

t't.e canonical inclusion of E into 8".

'l'he term (('tn' 
-topology" will be ernployed to clesign any of th-e

weak'- topologies o(-E',?)r-i(p",-D') and o(fr"'r4"); t-1'" context will
be clear enbug[ to dndersland which is the topolo-gy the aboye term
refers to. Coniergence with respect to the zo'- topology will bedenoted

nv 5.
As lrsual, tI, will be the transpose of a bounded. linear operator u

between two Banach sPaoes.

Given a veotor space -E and a seminorm p on E, we-denote !y (E'p)
the Banach space asso-oiatett to p. This is by definition thetompletion ot
the normed iector space E/p-{{O}). The canonical mtup f zE -+(fr,p|
is by tl.efinition the-composition ot tne maps E -'+ Elp-L({0}) -* (Irf)'

We note that all the results in our paper are true for real Banach
slxroes as well as for oomplex Banaclr space$ I however, for the sake of sirn-
piicity we oonsid,er ontyieA nanach spages-and we onJf .inilicate., at the
ipprripriate places, the moelifications needecl by some d.efinitionl in order
tb^ oo*ver thb complex c&se.

Given a vector lattice x, we denote by x, the principal ord.er ideal
generated by oeX*, i.e., the'set of those YeX suoh that lyl < or for
f,ome , e Pi (depending on 3r).

ffhe element e e x* is oalled a strong oriler unit Plovictecl that x, :
: .X. Wlenever X is Archimed.ean and e is a strodg order ttnit, the norrll

[J fl" associateil to a is defined by

tloll. - inf {alo € lR*, [ol < oe]. :
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rj narticula,r', ,every- n.e x* i! a strong order unit in the vector latticers; conseqxently, whenever -x is Archimedean we may consider the normll lb on X".
-e shall make use of the .well known fact that every principal ord.erideal J" in a Banach lattice x is order_j-"p"-rprti" u"h'iro-dt"i;l;;

lhe ngrm ll l[) to the Banach lattice c(r) oi-arf"o"ti""o"u rear-valuedfunctions on a suitable compact spaee I{.
A lattice homomorphism is a 1inear map u between two vector lat-tices -X, Y such that a(a, n nr) - U(r) i U(rr) for-eye.y n, nreX.
Fina!"v, _reeall that a Banach lattice is said to have oyder continuous

norm proided that ll ro ll .* 0 whenever (ro)s. X is a net such tU, t irrl O
we refer the reader to the monographs 16l and [1b] for the elementsof vector lattice theory used throughoiit tire paper. 

-' -

2. ALFSEIT.BFFROS TYPE ONDI}R RELATIONS
AND THE CEITTRALIZENS ASSOflATEI} WITH TTIE]II

2.r DeJinition. Let -D be a tsanach space. An order relation ( onE is saicl to be of Afsen-Effros type provide'dt that.ahe following contlitionsare satisfied:
i) u<oimplies o-u<D.

, *) u So implies arl <&,t) foreveryoe[p(every aeAif _Eisacom-plex Banach space).
iii) 0 < a < b in tp implies-az 4bu for evexy ueE.

. iv) ff n1 (at, uz go, and o1 4u1 f or,then ur4urauranduy** uz <rr]_ttr.
v)rla42t: implies llull <lloll.
tti) uo 4t(nellrl) and llu,- ull +0 implies u4ts.
Alfsen antl Effros t1l_ h-1ve considered the following two order rela,tions of the above type which make sense for any Ban?ch ip;t; 

:-

- The relation (;; defined by
u 4r. o iff lloll : lltlll * llo - ull;

The relation (,nr defined by
u 4uo iff every closed ball containing 0 and o also contains u.
observe that the de.finition .gf -(, can be reformulated as : u 4a o

f$ llr^t nll < qax {llarll,llw + oll} foi-every ?r e-8. lVtrite the verifica-tion of the fact that (z satisfies the conditions in Definition 2.1 is imme-
diat'e, tle verification of condition_iv) fo_r <, is less obvious;;;; ttl. 

-

. . T4" gyqt_epati.c urtldy of -order'relatiois of Arfsen-Ettios tjpii was
started in 1983 by the first author [10] who made the observatiori ihat inevery Banach lattice, the order reiatibn (, given by

u 4oo iff lcl : lwl * la - ul
also satisfies the conditiols i)-ui) in Definition 2.1. As the followingresult shows, 4o recalls botir k, ""A ?l::-- -'-' *"
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2.2. PnoposrTroN. (see t11l). .Let E bo a Banaah lattice. Then th,e

tollowing assertions arb equioalent for eoery u, t: e E :

il u 4"a.
ii) DaerE order interoal of E containing O anil a also contq'ins u.
iii) lr.rr + ?rl < lwl V lw * al for eoery weE.
iv) 'u- ( 'u- anil u* 4 ts*.

It is perhaps worthwile to mentioti that the one dimensional co-mplex
Banach space C admits only the trivial Alfsen-Effros t51re ord.er relation,
namel-v

The relation
con1'ex spaces.

u < D ttf u: aa for sorne oe [0,1].
41, reduces to the trivial relation precisely on strictly

In the remainder of this section, < will be an order relation of Alfsen-
Effros type on a Banach sPace -D.

2.5.-ne|initi,on. I};e centralizer associated with < is the set' Z.(D\
of all linear 

"operators U on E for which there exis-t_a, be [p* (depending
on U) such t'hat U(u) { au 4 bw fot every u e E.

2.+ ne|tnttion. A projection P on E is said. to be a < - Cu'nnin'
gham projeciion (or, simply, 4 - projection) provided that Pu < w for
every u e E." 2.5 Definition. A. subspace of -D is called a ( - summanil providetl
that it is th-e image of a < - Cunningham projection.

The predeceslors of the concepts introduced by Definitions 2.3-2.5
are the concepts corresponding td the situations ( : (r 1nd ( 4,,'
first consid.ered by Cunningham and Alfsen and Effros. See [1] for a
complete story. T[e stud.y of ttre above concepts in t'he abstract setting
of ai arbitrary Alfsen-Effros type order relation 'was initiated. b1' the
first author in [10].

Iil-o recollect here, without proofs, some facts connected wit'h centra-
lizers. See [12], [13] for details.

Becall tnal an |lalgebra is a vector lattice ,4 endowed with a struc-
ture of algebra such that ,1 *. A* c -A* and the relation a rt b -: 0 implies
ac nb:ca A D:0forany ceA*. AnyArchimeclean/-algebrais asso-
ciative and. commutative.

The set z.(E) is an algebra of bounded linear operators. The subset
z.(D)* oI Z.(E) formed by those u for which the constant o in Definition
2.3'is'equal to 0 is a cone n Z.pl such that the order relation_defined by
it enttows Z.(E) with a structure of Archimeclean /-algeb1a. Tle map 1o
is a strong oiOei unit tor Z.(E) and the norm associated to this stro-ng
order unil coincides with the operator norm on Z 

"(E). 
Consequently,

Z.(E) is a commutative Banach algebra.'2.6 
PnoposrrroN. (see t13l). z.(El is an oril,er connplete f-algebra

prooiiteil, that there eoists oliieai topo_logy-c on E such, tha.t eaerE < -ila
beasing net hae & greatest l,upar bownil anil t - conl)erges to it.

ti ttre case *hen -E is a Banach latticet and ( : (o, Z n(El coin-
oides with the usual lattice-theoretic centraliz-er of E, i.e., the set of those
linear operators U on -El satisfyins lU(w)l < o[ ul Ior all u e D, with
c € lR+ depending only on U.
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. ,- llru,,{ .- Quryunfh3pr,pmjeqtiqnl.afe preahety the idempoteqt,
.in z.($) i in .p61l6oruri:tt rf'tlrern cb#rnule.^Thd rit,n.iei.iill;ft[projections oonstitutox i' Roolean argebi;;f *;F*ti;ilii'ftiit' -**

Pv0:P+Q-Pq,
P " Q;= pqi

I ', Pi:1"-p.
i- . $i1cn-e ( -: surnma+d n of E, tlrc acnnplwnentarg stfrspaco IL of-F is rle,fined as the sd

$*ln e fr,10, al n Jfl ; {0}};
ire'e aurl olsewhore; [nz, oJ denotes as usually the < :- ofder intorval
{tnlu e E, u 4 w <'o!i r\ riscful re'natr. i,' lfiaf ii? i*i p*ij&lifiIiri#

: : (rrn P;r 'o rm P{ : Ker P'
I'or D a vbrr Neumaprl argebr.a autl < : 4u, thc cuqningham nro-

;icctions are the central p'ujectlons ,n r,hc rrr'-closiiri &";i&d';Ef,h;d;;
ideals. 8ee [t].

For -E a Banaah latticjr a,'rl u : uo, tire ounprngham projeciionsale the band projections. See [tl].

B. vricroh N0nMS
'

, ..^.i.J; D^!iyffi?".Irct, .D be a veetor npace. A rector norm on.E in a mapg detined on fl with values in a veotor lattice x; satisfying the fouo;d;requilemcnts :

i) q(ta) ) 0 for every uetr)) p@): o iff ,tt,:0.

-^*-I] '4:9^=-i:i-'.q(u) for every aetR, uep (every a,eg if Zisaconlplex vecfor spacc). 
:

!j)S(" -F3) < p(?r) + e(o) for every u,o eE.' rf z'is a Bahaoh sparco, ,ri is a naiaeli lattice and q satisfies [raddition

., iv) ll.q(u)ll-=_llu fl for. every ueD,
then ? is dalled an isonieiria. oecior norln.

3.2. Definition.(L. y. Kantorovich). A voctor norm 9: -E _, X igsaid to have the. Riesp d,eaomposition property prqyrdedJnit to, "ffi'y.t^,P-.*d^.e"9ry *,r,!.,e4.yi'1h qi"l'S ot* nztthere are u,r'QI'de Esuch
'tr]trttul * lr * us and g(ur) ( #r,- g(trr) S fr4. .

Fon tatter pu'poqe$ .we recoid irbrii tue iollowing le.roma i ,

3.8 Lnum. Let ft be a oaotor qp_au, ! an orilor oompleta oeor,orIatticd, U :E --+ X. ? .li1ey ?ap orr.,l pop_r: E _, i ,"itf"ri-ilf,,
.eu,ch thatU(a) < &(!l') t Pr/q-) tor_eoerg. uei. it,anthere are tinear milpiU,, lu j E.- { eich thor' ti : Ur *"U, ,a- A,lii"l i,Wi ii ;;;.;
116 E, ri e {r, 21.

^ lr?oj,Qogsi$e1the subtinlarpap p J X-n -+ -f,.given by p(w1,ur)::: Pr(wtl * Pz@;). IJet D : {(u, u)li e A1. Cne *ap-? , p".* f "{ien
t - c. 2365
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bv \,@,w\: AOt\ satisfics V(urw) ( P(u, ru) rfqr evory \urtt) t ?' Cql--
sdqueirtiv,'the operatoria,l vcrsion of the lllhn'Ranach theorem (see [r) I

oaie 2+g)'allowsirs lo extenrl fr to a lingar]m&p' denotetl again by Ir, dofi'
i"fi"""-dtt- wholc Dx lt antl srr,tistying l''(z' uz\4P(uy*r) frtr-cver.y
Tu,.w,\eE x l,'. The ma,ps lJy,TIz octinett by Ui(z) - Y('tt,0), Or(a)-
l'VQ,z) have all the iequiied propc'r'tics'E

We intticate now son1e l'epreseutative oxamplt's of vector norln$

having inu ni**, decomposit,ion pro'crty (abbrcviab*d, RDP).
, 5.+ Bnample. Tho lR - valuetl.r'eoto-r. ilorms ate prccisely the usttll
norms. Clearl-vi an; such & norln lras the RI)P'"'

3.5 Enantpte. Il D is il vector latbice, tho map 9 : E -* trl sivtllr by
o(u) : I u I is il vector norm. Thc classical Riesz decomltosition ploporty
il'" 'ou"to*'latt,ices rnea,ns precisely that I has the nI)P'
' 3.6 Dnanrytlc. Ttet' D bo t llnnnclt spaee antt ll9t, -Y h,e an order corn-

olete vcctor lrul,tictr. A lirrem'opelalirt''u:1,) -r.,Y is crllletl majori'$ng if
fr(E"l i,s ordtlr bounded irr .1.-lUhc scl of nll mtjorizfurg oPct'att)rs troln
E to x is a 

'botor 
,,'n*"; tluroteal try ,t{(It'1, x). TJre rnap 

'. 
: lI(l\JQ * X

;;;;-by ntg) == *,ip Uiljo,) is a vectoi ir.rnr having the li,I)P. To stre

?ni*, f*l"piU) < ,r*{-rr) li*^r.oo 33 applicd toj,}e.linear m*P ? *3dJ1q

the sublinear maips'Pr| P;, E -' x givt"l try P,(ul: llell ' !t.$.t 1L'?])
vields thc linear' *^p*'b,, "[/. *nclr t,h'ri,t li if -Lrr_J- 

U, nntJ' U'(u) < llull'
".'ir-(u"i-i,; L ir, zfl. rt tntto*'* l1at, u, e Jt{p, x\ anrl tr(I/') < r"'

Supposc n,,rt ihat .tri is a Prantch lrr,tticc antl rlefitre tle n'rm ll ltra

on U7ffTt by it itilfllt(t)il.Erttlorvcd t{l'h this nirrn' \I(P}'X\
U""odr'a Rani,eli itpa-ce anif p b.comes au isontotrie, veptor n()rm'

3.1. Enamqtle. iet -E be a Banach spacc and lot.{}u " 
vcctor lat't'ice'

A nne# ,rp*"*t1ir A :.-*--n is ca,lled eo'i, ,rrrrr*nble if. tor crer;' r e 'In wo

hnve

(1) *t 
Uill 

u(o,) ll1'n>- t, nlex*, i nt : ol'*'

;;;;; iv s-tx. D). For evcrv--{/ e s*({r D),let; o(U\! lg tttq surremum

;ilh;;ti" ifi. r.r,n'**p r* ,(Ul* (r.,t.) b11 t19_eltenrled bylinearity
to * nositive linear f;;"i on J,'denoi;cd. by 6((I\.We havc thus obtaiuod^

;;#;;;,:;;,'s;(x; u1 *'x-, where k- denotes the vcctor lattice of

all order boundecl linear forms on X'"-- "-ftb 
i.q a Auat n""u"n spaee, thel o has tho RDP. This can be seen

as fotlows i rut "r' n".-* ptga;iil'P, i.e-t E 
=!','. fo l.very u e B*(x' 'E)

#"^"ffiffi i" 
- 

o i a 6, x) bv U (a)@\ :--u(gXo )'- TIL "qryu*po1d-e3o9ii-, D-"*tuUri*nur o tijucti6n tSetwi,eri S.tX, pf 'an6 
-M(4, 

X- ) suoh that

,it7l 1 ati; it remaik to use Exampie S.O in orcler to oonclutle the

proof.
suppose now that x is a Banach lattioe and, define the norm -!l Jlu

on S.(fi-p) by llUf[: ff "tulttr Endowod with this norm' s+(x' -E)

;;g;;;; :6a"i,cn s$d,ce'ind o'becomes an isometric veotor norm'

3.8. Eoampl,e. Tet E be a Banagh space and |e! X be a Banaoh

lattioe;?e 
""6&fi,iru 

tnat X neeA not bo oider oomplete. Let M*(frtrxl
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be the space of all linear operators U : E' --+ X satisfying the following
requirements:

l) U'(X') c. "f s(E).
ii) There is an r e X* such that U(Ba,) is eontained in X, and is

totally bounded for ll ll".ft is well known that the supremum of a totally bounded set in a
Banach lattice with strong order unit always exists. Consequently, for
gyely U e M-*(E', X) it makes sense to consider the element i(U) - sup
9_\8_t,) of .X. We lrave thus defined" a vector norm p z M*(11'', X1 -, i.
With respect to 

- 
the norm _ll ll- given by ll U lloo : ll p(U)ll, M*(8,, Xl

becomes a Banach space and p becomes an isometric vector norm.
The vector norm p has the RDP. fndeed, as every order ideal Xo

is order isomorphic and isometric to a space c(K)) it, suffices to prove oui
assertion o.ltlI in the case X : C(K). But in this situation, for eyery
U e M*(E',C(-K)) there is a continuous map I ;K -. -E sucb that tJ(u)(t) :
a(Jfl(r)) _for every ,u,eD' and, teK. The hypothesis p(U) < nrI nz
means that-llf(tll { rr(t) + nz(t) for every t e K. Define the continuous
maps -Fr1 : K --+ Eby

Xd(t) : (rr(t) * nz$))-L ur{t)n(t). if n,(t) f r,(t) ;0
r,(r):0 , if. nr{t) * rr(t) : g

or i5.{1,2J. -The operators U6e M*(E', C(K)) grven by Uo(a)(t) ::u(Xlt)) (de {1;2}) satisfy al the requirements in the definition of'the
R,DP.

The importance of the Banach space M*(E', -T) lies in the fact
that it is isometrically isomorphic to the ll4-tensor prod.uct n6*X. See l4l

The interest in vector norms with the RDP is justifiecl by the poss!
lility o! d.ualiz!1g such norms. Indeed, given the Ranach space ,8, the
Banach lattice .T and the isometric vector norm I : H --+.T with the RDP,
a d.ual vector norm g' : E' -* X' can be defined by

q' (u')(n) : 
;#!"1 

u' (u) 
I

for every u' ? E'-g,nrl r e_X+ i the map q'(a') : X+ - lR+ is positively homo-
geneous ancl atlditive (because of the RDP) and thus extends uniquely
to a positive linear form on ,f, also denoted. by q'(u'). It is clear that
g' is a vector il.orm: in fact, we have

3.9. hoposrrroN. <p' is an isometric aeetor norm wi,th the RDp.
Proof. The fact that g' is isometric is straightforward. calculation.

fndeed", 
...

llq'(u')ll : sup q'(w')(a) - srlp sup la'(u)l = sup lu'(a)l : llu'll.llrll<r ll'll< 1 e(ei < ' ll"ll< 1
t>O r2O

To see that g'has the RDP, Iet 9(w') < ri + oi. Equivalently,
u'(u) 4 ni@@)) * nLk@)), ueE.

By applying Lemma 3.3 to the linear form u' and to the sublinear forms
u - oi(q(u)) (i € {L,2\), we obtain the linear forms ax such that uu(u\ <
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< ri(c(rr)Xue4rtle{1,2}) and u':I;Lf ur' I{ence 9'(ru1) ( r'r ancl the

proof is cornPlete. I
Proposition 3.9 allowsusin-particular to consider' 9"' ?'-" and so on'

We fraveihe following canonicalielation between 9 and 9":
3.10. PnoposrrroN. Let I zD "+ X be &n isometric aector n'orrn'

hatsing the F'DP. The'n

n,(q(u)) :n,1,)11,, )u, (u) |

lor eaery ueE an[I n'e X'*'In oth'er worfls, 'p"(/u\u)): 'f x@@))'

Proo.f .The rnap v, ---> n'(9(u1) is a seminorm on -E and t'he set' of Iinear

tor****ulo"^i"a r-v 
-it 

is ]ieciiet-v- Ju'ly'eE-" .9'(n") < #') I thus' our

assertion is a coosequ"oce 6t the l{abn-Banach theorem' 1,

DnamYiles of dua,litY

Thedualsofthe[p-valued'vectornormsaretheusualdualnorms"
The ttual of the vector norm ?, -*lul on a Banach lattice 'D is the

vector norm {r' -. lw'l oL D'.
The clual of M*(E"F) can be isometricall-v identifiecl with g*(r' -E')'

When this itl,entification is pertormed, one can"show, by lslnS-lh: t9"h11-

ilt-"i"'t+f;ih"tth"";i".1"5"* of the vector norm * oi Ma(D',JI) is the

iector norm o on S*(-Xt, -D')'

4. THE RELATIONS (7,,e'AfD (u,e ANI) THIIIR IIUALITY

Throughout this section, D -will denote a Banach space'..{ I Banach

lattice and g : H ---i an isomet'ric vector nolm'*{[en€Y€r 9' rvill be con-

;fi;t"d' it i"iff U" understood that I has the R'DP'

4.I. Deiini,ti,on. Tine relation (r,* otr E is defined by

w 4t.,e 0 iff q(o) : 9(t') + 9@ - u)'

The relation (y,e on 'E is d'efined by

lt, 4a,po iff g(t'o * u) < q(ar) v C@ * a)

for everY weD-
4.2. PnoposrrroN' 41$ {rnil 4vs ara ord'er relati'ons oJ '4lfsen-Dffros

type-

ProoJ. The verification of condit'io-ns i) .]y) in I)efinition 2'1 for

(,, is quite elem"otu"y. For instan"", ih" v'eritieation of ir) needs only

til6'iti""g-G i"equuriiy''rndeed, we have try hypothesis

?(or) : 9(1,) + 9(o, - u), ie{l,ZY

q(or * oz) : 9(or) * q(oz)'
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Thcn

q(or* oz) ( p(or |-t,z-ur-uz)* q(% *uz) (
< ?(?t - u,.\ * q(ar) I q@, - u) * q(uz) :

: p(or) * q(oil : q(or l'u),
which implies thafr, u, -y u2 4t,e ot * oz and u, 4r9 u1 { n'r.

Tlre fact thab 4n,,, satisfies all conditions in Defitrition 2.1 except
for iv) is also straiglrtforwarrl. The verification of iv) is reduced to the
scalar case and proceeds as follows. \\'e haie b.i- h.1',pothesis 'tt4 4x4,er;
(i e {1, 2}) and t:r4rr*urlar. Given toeE, wt:have toprove that <p('tlf ttt)E
<q(?rr) v q(w*%* ur) anrl q@+u, |_ur\ <?(ru) v'p(u*at*az).
Let r : q!o) * g(ur) * q(uz) * q(q) * q(t'r). As q(tr,,), 9(o') atrd 9(zr)
all belong to I, (f e {r,2}) and.T is order isornorphic to a space C(1(), all
we have to provc is that 1,he relations

\2) S(q(tp + t r)) ( max {8(e(zo)), 8(q(zo { u, { ttr))\

(3) 8(9(to *ql uz)) ( rnax{8(q(w)),8('p(tll+ ?Jr + ?rr))}

holrl for any lattice homomorphism I ; X, * IR. To this purpose, let 8-be
any such laitice homorphism and consider the seminorm p on? : g-1(X,)
given by p(u\: S(q(u)).Thehypothesis yieltls tbat T(u) 4*T(t:t)(i e {L'2})
a,nd, Ttsr-4y Tts, * Tau in (-[', p), where I : I - (n, p) denotes the cano-
nical map. Consequently, $'e also have

T(ur) 4u T(ur) | T(ur)

T(u;r) | T(ur) <_o 7(rr) * ?(og).

Now recall that the ttefinition of 4n rnakes use of an element which runs
over the whole spa,ce; by taking T(w) as that element in (4) and (1-r), one
obtains precisely (2) and (3).f

For 9(a) : llull,thenormof D,we have 4r,* : 4tand (,u,,p : 4u.
For -E a Banach lattice antl 9(u) : 1u l, the modulus of -D, we have

(1,* : (nr,e : (o1 see ProPosition 2.2.

We leave as an open problem the stutly of the relations (r..e and
4.. and of the concepts associated with them in the situation when g

is oiie of the vector norms clefinecl in Examples 3.6-3.8.
The centralizer a"ssociated with (r..* (respectively 4u*) will be

denoted. by Zy,n(E) (raspectively Zr.*(E)).

4.3. PnoposrrroN. Lat U be a baunded linear operator on E. Then
U eZ"*(D) (respeetioely Z*.*(E)) ,f anil only ,I U'e2,,1,*'(E') (respec-

lit:elE Z 
",r,(E')).

Proof . Suppose first that A e 21..n(D). Without loosing generalityr
we may assumethat 0 < U < Tuin 21.*(E). Let u',u' eE' and ueB
be given. By hypothesis we have 9(u) : g(Uu\ * e(u - Uw). The ine-

(4)

and
(5)



760 c. P. NICULiESCU and D. T. VVZA 10

quality
(w' * U'tt')(u) : w'(w - Uul * (w' ! w')(au) 4

( p'(to'Xq(u - Uw)\ * q'(ut'f u')(9(Uu)) (
( (?'(eo') v g'(w'* u'))(q(a))

shows, by taking suprema, that

q'(?D' + U'u') 4 g'Qt)') v g'(oo' I u'1,

which rneans thab U'(u') 4 *.,,'ttr',&s tr' was arbitrary. Ilence a' e Z*.*'(E'l-
I{orv suppose that ti'eZ**(E); as above' we may assumo that

0 <U ( 1r. Let u,'eE'and o,meU be given. Wehave

(U'u')(a) * (u' - U'u')(w) : u'(Ao I w - aw\ 4
( q'(n'Xp(Uo+w-awD ( 9'(a')(9(o) v e(ar))

as

q(Uo *w -Uw):y\r * U(a -w)') < 9(2tr) v 9(o)

by hypothesis. By taking the appropriate suprema we obtain p'!Ty'.\ +
+ q'(u' - U'u') ( g'(u'). As the reYerse inequality g'(w") ( g'(U't') 4
* q'(u' - (J'u') is 'always true, we obtain that U'tt' 4r,,*'11', hencc
U' e 27.*'(E')-.

Finally, tf U' e Z*,r'(E') (respectively Zt.e'(E')), thgn_!" e Zv,r;'(D"l
(respectively Zy.r,'(E"))'by what h?ve just_treelProved. Irkiog into ac-
eount Proposition 3 .10 we cbnclud.e th at U e Z 

"*(E) 
(rospectively Z s,r(E)). I

4.4. Conor,LARY. The map U -- U' is am 'isometri,c, algebrai'o anil lat'
ti,ce homomorph'ism, of Zy*{El @espectdoety Zw*(E)) into ZM,e'(Ei') (res-
pectiuely Zr.n'(E')).

Proof. The fact that the map und,er consideration is well definetl
follows fr6m Proposition 4.3. The lattice homomorphism part follows by
cornbining the next two remarks. First, it was shown cluring the Proof
of Propos--ition 4.3 that the map U - U' takes 2"*(E)* (respectively
Z*,n(Ei*) into Zs.r,(E')* (respectiiely Zp.r,(E')*). Second, in ever_y Archi
rnealean /-algebr-i' with unit, the ielatibn (! n b : 0 is equivalent to :

a2O,b>Oand.ub:0.1
4.5. PnoposrrloN. Xor euery proiectdon P on E the following are

equiaalent:
1\ P i,s an 4w.p - projection.
ii) 9(o * Pu\ < q(o) v p(o ! u) for every u, a e E.
iii) 9(u) : <p(Pu\ v 9(u - Pw) for eoery w e E.

Proof. Clearly, i)<+ii) anct iii)+ii).
ii)+iii). Notice first that q(Pu\, q@ - Pw) 4 q(u) for every w e Il.

On the other side,

q(Pu * (f - P)o) : p({, * P(u - {,)) < 9(o) v 9 (u)
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for every u,, o e -D, which implies

q(u): q(Pru + (I - P)ru) < q(pu) v q(u - pu\
for every ueE.1

4.6. PnoposrmoN. 27..*'(E') anil Z*,.*,(E') are ariler.comyilete f-atge-
bras.

-Pro9f.I-r9! < be one of the relations (2.e, &nd (v.*,. By Proposi-
tion 2.6, it suffices to show that every < - cleireasing net has a greatest
lower bound. and. w' - converges to it. The latter fact can tre obtained via
standard a,rggmenls- if we prove that every 4 - order interval lu,, D,fil *' - closed (andhence.u)' - compact). By conclition iv) in Oefiniiiori
2.L, lu',o'f :a' + l0'a'-'ttr'h inordertoconcludetheproof itremains
to remark that the lower semicontiluity of each map z' - q'12'1(n) (n e X*l
implies that [0, a' - Qt'J. is zo' - closed.l

IMe shall introduce now the notion of an ideal.

4.7. Def,i,nition. An (r., - i,ileal (rerpectively An (.u., - ideut\
of E is a closed subspace I of E wi1,h the property tbal ihe liirta,r /. of
f is an 4a*'- summand (respectively an 4r,*l - surnmandl in n'.

The terminology is motivated by the ease when ( : (on first
treated by Alfsen and Effros [1]. They noticed that the 4a - ideals of
a C* - algebra are preeisely the norm closecl two sided a,lgebraical icleais.

The case ( : (o is considered below.

4.8. PnoposrrroN. Let E be a Banach tattine anrl Let I be ocloseil
subsytace of D. Ihen the Jollowing assertion are eqair;alent:

i\ I is an 4" -'id,eal.
ii) f fs an oril,ar iileal, i.e.,lyl < lnl and nel i,mply y e I.
Eeturning to the abstract, setting described at the beginning of this

section, let us establish the conditions that rnust be satisfied by an ideal
in order to be a summand..

4.5. PRoposrrron. Let I be a,n 4r.* - ,ideal (respecti,rely am
4w* - id,eaL) iru E. Then the Joltcwing asstrtians are equiualent:-

i) / is an 4"* - summ,and (respactioely sry' .4u* 
-sum,manl,l.iI) The Cunningham, projection assactated'with 7" is rn'-contf,nuous.

iii) l'a is w'-clnsd^
,io) nor oaery weU there is a tsel. str,ch that w'(u): u'(a) Jor eaery

u,' e loL.

' Proof . Filst of all, denote by Q the Cunningham projection onto fo
and remark that lor *Ker Q. '

' i) =+ iv).'Denoting by P the Cunningham projection onto f, we have
Q : (1, - P)' by Prcposition 4.3. Consequently, for evcr]* tl,' e -Ior and
ueEwehave

u'(u) - w'(Pw) + $'(,fi: - Pw): w'(0)
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'witho:PueI.
iv; + iii). Irct u'5€1or, ";Ltt'' Toprove t'ltAt w' elor, take any

u e E. Ity h1'pothersisf there is a tr e I such that z'(tr,) : z'(ul for eyery
z'eloL. As ir[ a,nd. u,' - Qu' belong to f r, it follows that

u'(u) : tim tr'i(u) : lim zi(o) : u'(t:) :
06

: (Qu'\(n) + (u' - Qu''l(t:\ : (11' - Qu'l@|.

Ifence, (Qu')(u\:0; as tl was arbitrary, 'u,'elot-
iii)+ii). Follows from the well known fact that a bounded projec-

tion P on E' is z0'-continuous iff Im P ancl l(er P are to'-closed'
ii)'+i) Follows from Proposition 4.3.I

5. A SITUATIOI WIIEN A:LL (v,,s'- SUMMANDS AnIl a"-CLOSIID

A result due to cunningham, Effros and Boy,[?] asserts that every
(y-snmmand in a dual Banach space E' tS w'-closed; consequentlv, every
4"-ideal in -D is an (z- sumnvr,nrl.

on the other side, every (projection) band in tle d.ual of a Ranach
Iattioe with order iontinuoui norni is ur'-closed; this fact was first noticed
by Lruxemburg and Zaanen. See [14].

It is the purpose of this section to bring tgselher bgth of the above
mentioned. resrilts,-by deriving them as corollaries from the rnore general

theorem statetl below.
Throughout the section, -D will be a Banach space, x a Banach lat-

tice wi,th ord,ar aontinuous norln and g : E '* X an isometric vector norm
rvith the RDP.

5.1 Tlrnonnnt. Etsery <M,e'-surrtrnanil in D' is lt)'-closed'

Proof ' Let f be an (:rr e'-summand in 'E' and let P be the Cunnin-
gham proj"ection onto.I. hidrder to provo that f is ar'-closetl it suffices

to show that u' ef whenever u[e lr*[Lu'and supllt(llcm; see [9]'
atBut zi - Pu''' >rL'- Pvtr'rtr'a- Pu'ef and Qr,'- Plt' e$erP; hence

we ma! assume from the beginding that u'e Ker P antl we have to prove
that u':0

Denote by/ the positive linear from g'(zi)_ot x. lrn oltle.r.tq see that
f : 0 it sufficei "to 

sh^ow that the carrier S, of f, i.e., the disjoint comple-
'ment of the set {rlnex,I,1nl't:0}, is retiuced to {01' This is so because

/ is ortler continuous; see [6].
So, let resy n X* and e>0 be given. Put' M:*rlBlluill' As the

norm of -X is order continuous, there is en/B € X'* such that (g - f,)*(o) ( e

whonever geX' antl llgll < ff. See' [8].
tr'or every ,o e [N we have

(6) g'(,rri + mu') = q'(ui) v tuq'(a'l : p'(w'ul v nt'
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But
,p'(nt') : q'(u;) 

^ "f" + (p'(u$) - f,,\*,
(z) q'(u6) v nf 4 ("f" * (q'(r6)- 

"f.).) v (nf -t (e'(u6) - "f")*) 
:

: f, v nJ i @'@l) - /")*.
ft follox's irom (6), (?) and the inequality llg'(ui)ll < Jll that

(8) q'(?r; + n'u')(r) < (-f" " nJ)@) | e.

The function z' - q'(z')(n) being lolser semicontinuous, \\'e obtain from (8),

(L t n)f(n) : q'(u,' { nu'\(n\ < ("f" v nfl(n) { a.

X'or every ro e IN there is arl frn e 10, r] such that

f"(n*) * nf(n - nn) 2 (f" v nf)(ul - e.

Consequently,
(L * n)f(n) ( "f.(r") * nf(n - n") | 2e

and finally
(e) /(r) < j"(r,) - nf(n") | 2e

for every ?r, e [N. We shall derive from (9) the inequality /(r) ( 2e I as e
'was arbitrary and ,r \\ras in Br, this will conclude the proof of the fact that
/, and hence rL', ate equal to 0.- 

Indeed, if .f,(r,)- nf(n")< 0 for some n,,thenf(rl<Za.Let us therefore
suppose t}lrat f"(r") - nf(n,) > 0 for all m. As [0' tr] is weakly compact as
treing an order interval in a Banach lattice with order continuous norm
(see i6l, 1141, [15]), we may assume, by passing if nece'qsary to a subse-

quence, that r, --+ y e [0, r] weakly. From 0 < "f(r") a I /"(r) it follows
n

thar f@): 0 ; as [0, r] c By, the latter equality implies lhat' y : 0. Ilence
I"@^l r 0 ancl the conclusion follows from the relation

/(r) < J"(r*) - nl@,) f 2e ( f"(o,l l2e.l
5.2. Conor,L1rnv. Eaery 4",*-iileal in E is an 4",*- surnrnnnd.

5.3. Conor,r,anv. The maqt U --* U' is an isometrin, algebruic urd,
oriler isomorphism of Za.*(El onto Z*,r'(E').

Proof.T-,et A denote the image of. Za.r(El und,er the map U -*U'.
As the /-algebra Z*,r,(E') is _order complete by Proposition 4.6, it is the
closed linear hull of the set of its idempotents, i.o., tho (s.e-projections.
As ,l is closed and contains all (y.r,-projections by Theorem 5.1, it
follows that A : Za.o,(E'\. I

The results mentioned at the beginning of this seotion are respecti-
vely derived as particular cases of Theorem 5.I- by taking 9 to be the
norm of a Banach'space, respectively the modulus of a Banaoh lattice
with order oontinuous norm.
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6. <.SUIIMANDS AND WEAK SIJQUENTIAL COIIPLETENDSS

A olassical result due to l-rozanovskii t14l asserts that if a Banach
lattice.D has the property that f u(E) isaband in 8", then -D is weakly
sequentially cornplete.

A more recent result due to Behrends [3] asserts that if a Banach
spa,ce -i? has the property that io@) is an 4"-surnmand in D", then -E
is weakly sequentially complete.

It is the purpose of the present seetion to show that our general
theory allows to bring together the above couple of results. The proof
relies on two lemmas, which borrow some ideas from Behrends [3]. \Me
note that unlike in [3], no appeal is made to the principle of local refle-
xivity.

Given a topological space K, a function / : K --,lR and a point
t e K, we denote by L,g) the intersoction of all sets ff; 1i.e., the closure
of /(7)), where trz runs over all neighborhoods of t in K.

6.1. LEMMA Let D be a Bana,ch spaae anil, let u," e E" be suah that

(10) llau" * f r(ulll : lol .llu" ll * llu,ll

Jor ensug a elp and u e E. Denote bE f the restri,ction oJ u" to the topologi,cat
space 13",, endowe,il wi,th the w'-togtology. Then Lr(w') :L-llu" ll, llu"ll]
tor eoerg u,' e Br,.

Proof. Clea,rly L/u') - [-llw"ll, ll'n"ll]. tr'or the reverse inclusion,
let oe [-lla'll, llu"ll], let, V be a beighborhood. of u' in Br, and let
e>0 be given. There are r;;0 and zrr,...tM,e,E such that
(11) {ts'lo' e B",rlts'(ur) - u'(W\l ( l,I- < i 4 n} c. V.

Define g:lRQr" * g"(E) -* IR by g(bu" I i"@)): ab * w'(u\.
We have

lg(bu" * iAu))l < lcl'lbl+ lu'(u)l s tbl'llu" ll * lltlll :
:1lbu" * gr(u)ll

by (10), hence g has an extension of norm at most t to 9", again denoted
by g. As.f d,(Bn') is o'-dense in Bp,,', there is 

^ 
o'e Br, luch that

11

9zt
ahu
(13)

lg@") - u"(o')l<e

lg(-fE@t\ - a'(wr)l<1, 1 < i < ra.

But g('f s@o)):u'(u,) t hence (1L) ancl (13)imply that tt'e I/' As 9(w"): a

aud e>0 was arbitrary, it follows from (i2) that aefff1. As 7 was arbi-
tra,ry, aeLT(u').1

6.2. L,rvrwl. Let E be a Banach spa,ce, let' ior,o), c, E and, l,et u"' e E"
be swch that.f u@^)\Qt" a,nd, (lo) holds for eoerL ae [p'rad u e D. Ihen'u," : 0.

Proof. Let J be the restriction of u," to the conrpact space (for tho

u'-topology \LBu,, The fact tinat .f 
"(w,) 

'' , u" implies that/is a funotion
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of first E?itq class, hence the set of points u,' e r)r, at which / is eontinuous
is nonvoid. At every such point u, we rnust har.b Lr@,) :"{J@;)\; 

"o"r"_quently, Lemma 6.1 gives u" - 0.f
6.3. Tnnornv.. Let E be a Banach space, x a Banach rattice and,q I E - x an isometric aector norm witkthe nDp. Buppose tn"t i;aj'ii6k 4t,e"-summanil in 8". rhen E is weakly sequ,entiitfy contplete."
Proof. Let, (u,)o c. E be a *'eak Cauchy sequence. There is ,tL,, e fr',

such that l'(u*)!1a". Denoting by pan (7,r--projection onto -fr(E)1
we have -f-(u,\- P,u,"-\,11" --iu'i, f r(u*) - p,u,,,egu(E) 

^nd- 
,tr,,,

- P,tt" e Ker P. I{ence, it may be aqsumfd"irom the befrirning lhat u,, e
Ker P; the- proof will be concluded by showing that u7, : O.

To th-is purpose, letJe 'r* and let_p be tire seminorm on z given
b,y f@'\:-f(q(z)). Den-ote_by .E' tJre Banacfi space (8, p) and by T; f ---X,
the canonical map, which is a bounded op6rator. boirsequeotly,

(11) .f ,(Tu,\ 
o'', 

7,,u,,.
A straightforward computation shorvs that
(15) ll T,,o"ll : q,,(t:,')$)
for ertery D" e8". The relation Qr,,, el{erp implies
(16) g"(anc" *t"(u)):lal.g,'(u,,,) * q,,(f u@)l
f or every a e lft and u e E. Combining (15) with (16) we obtain
(1?) llaT"u" { "f ,(Tu) ll : I o l. ll T,,u,,ll * ll 

"a 
ll

I91 qy".V a-e [p ar,nd y e E.T?king into account (14), (1?) and Lemma 6.2,it follows__lhat T"(u").- o, tbat is, q','(t1")$):'o by (rr). * r *r* arul.ltrary in -X'*, rve infer that 77," : I and theproof is cbmptbte.f
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