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INTRODUCTION

The purpose of this paper is to extend some concepts from the M-struc-
ture theory of Banach spaces to the setting of Banach spaces endowed
with vector norms. The main feature of this approach is that it brings
together facts from apparently distinct theories, such as M — structure
theory on one side, and Banach lattice theory on the other.

Our paper is divided into 6 sections.

§§ 1—3 have an introductory character. The problem area in this
paper can be viewed as a part of the general theory of Alfsen-Effors type
order relations developed by the first author; for this reason, § 2
is devoted to a brief survey of some basic facts in that theory. In § 3
we present those facts concerning vector norms and their duality that will
be needed in the following seetions. Since we cannot give a satisfactory
reference for the duality of vector norms, we have included, for the
reader’s convenience, all details there.

The main concepts in the paper are introduced in § 4. Given a Ba-
nach space F and an isometric vector norm 9: B — X, where X is a
Banach lattice, we may consider the following two order relations of Alf-
sen-Effros type :

T< oy if and only if o(y) = o(x) + 9y — =),
& <o ¥ if and only if o(z 4 %) < 9(2) Vv @(z + y) for every z € E.

For ¢ = || |, the norm of B, one finds again the relations <
and <, introduced by Alfsen and Effros [1 ]. For ¢ = | |, the modulus
of a Banach lattice F, one finds that both < Lo and <, . coincide
with <, a relation of Alfsen-Effros type introduced by the first author
in [10].

Various concepts associated with the above defined relations such
as centralizers, projections, ideals and summands, are discussed -throu-
ghout the section 4; in particular, the duality between the centralizers
of <, (respectively < M) and <, o (respectively < L¢") I8 established ;
here ¢’ denotes the dual vector norm of -g. . ,

In §§ 5—6 we realize the announced unification between some  re-
sults from M-structure theory and Banach lattice theory. Thus, a result
of Cunningham, Effros and Roy [7] asserts that every <, -sSummand in
a dual Banach space is weak’ — closed. A result of JTuxemburg and Zaanen

[14], [15] asserts that every band in the dual of a Banach lattice with
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order continuous norm is weak’ — closed. Remarking that <-summands
and projection bands are particular instances of our notion of an < e
summand, it is the purpose of § 5 to give a general theorem which inclu-
des both of the above stated results as particular cases.

In the same manner, the purpose of § 6 is to give a unified version
of another couple of results : namely, Behrends’ result asserting that every
Banach space which is an <, -summand in its second dual is weakly sequen-
tially complete, and LozanovsKii’s result asserting that every Banach
lattice which is a band in its second dual is weakly sequentially complete.
See [3] and respectively [14] for details.

The first named author is much indebted to Professor E. Behrends
for providing him with a copy of the monograph [2].

1. PRELIMINARIES

We begin by listing some notations to be used in connection with
a Banach space E :

1, the identity map on E.
By, the closed unit ball in E.
E’, the dual Banach space of E.

S, the canonical inclusion of E into E”.

The term “w’ — topology” will be employed to design any of the
weak’ — topologies o(E', E), o(E"’, E') and o(E'"’, B'); the context will
be clear enough to understand which is the topology the above term
refers to. Convergence with respect to the w’ — topology will be denoted

by — .

As usual, U’ will be the transpose of a bounded linear operator U
between two Banach spaces.

Given a vector space B and a seminorm p on E, we denote by (E, p)
the Banach space associated to p. This is by definition the completion of
the normed vector space E[p~1({0}). The canonical map T : K — (B, p)
is by definition the composition of the maps E — E[p~}({0}) — (&, p).

We note that all the results in our paper are true for real Banach
spaces as well as for complex Banach spaces ; however, for the sake of sim-
plicity we consider only real Banach spaces and we only indicate, at the
appropriate places, the modifications needed by some definitions in order
to cover the complex case. ’

Given a vector lattice X, we denote by X, the principal order ideal
generated by z € X,, i.e., the set of those y € X such that |y| < ax for
some ¢ € [R, (depending on y). _

The element ¢ € X, is called a strong order wnit provided that X, =
= X. Whenever X is Archimedean and e is a strong order unit, the norm
i lle associated to e is defined by '

f|ls = inf {a|a € R4, || < ae}.
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In particular, every z.€ X, is a strong order unit in the vector lattice
X, ; consequently, whenever X is Archimedean we may consider the norm
Il on X,.

“e shall make use of the well known fact that every principal order
ideal X, in a Banach lattice X is order isomorphic and isometric (for
the norm || ||,) to the Banach lattice C(K) of all continuous real-valued
functions on a suitable compact space K.

A lattice homomorphism is a linear map U between two vector lat-
tices X, Y such that U(x, A x,) = U(xy) A U(z,) for every =, x,e X.
Finally, recall that a Banach lattice is said to have order continuous
norm provided that || z;]| — 0 whenever (x;);< X is a net such tha t 251 0

We refer the reader to the monographs [6] and [15] for the elements
of vector lattice theory used throughout the paper.

2. ALFSEN-EFFROS TYPE ORDER RELATIONS
AND THE CENTRALIZERS ASSOCIATED WITH THEM

2.1 Definition. Let E be a Banach space. An order relation < on

E is said to be of Alfsen-Effros type provided that the following conditions
are satisfied : -

1) 4 < v implies v — u < v.

i) w < v implies aw < av for every a € R(every a € € if E is a com-
plex Banach space).

iii) 0 € ¢ < b in [R implies au < bu for every u € E.

iv) If w;<vy, 4, < v, and v, <v; + 0,, then Uy < Uy + U, and u, +
+ Uy <1y 0,

V) 4 + v <20 implies |u| < ||o].

Vi) 4, <v(nelN) and |ju, — u] —» 0 implies % < v.

Alfsen and Effros [1] have considered the following two order rela-
tions of the above type which make sense for any Banach space :

— The relation <,, defined by

* <y v iff o] = [ull + o — ul|;

— The relation <, defined by
% <) v iff every closed ball containing 0 and v also contains .

Observe that the definition of «,, can be reformulated as : % <u?
iHf ||lw 4 u|l < max {|jw|,|lw + v|} for every w e E. While the verifica-
tion of the fact that <, satisfies the conditions in Definition 2.1 is imme-
diate, the verification of condition iv) for <,, is less obvious ; see [1].

The systematic study of order relations of Alfsen-Effros type was
started in 1983 by the first author [10] who made the observation that in
every Banach lattice, the order relation <, given by

w <, 0 iff |v] =|u|+ |v— u|

also satisfies the conditions i)—vi) in Definition 2.1. As the following
result shows, <, recalls both <, and <.
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2.2. PropoSITION. (See [11]). Let E be a Banach lattice. Then the
following assertions are equivalent for every w,v e K :

1) u <,v.

ii) Every order interval of E containing 0 and v also contains u.

iii) |w +u| < |w|\y |w+ v| for every we E.

iv) u_ <o and u, < v,.

Tt is perhaps worthwile to mention that the one dimensional complex

Banach space € admits only the trivial Alfsen-Effros type order relation,
namely

% <€ v iff 4 = av for some a € [0,1].

The relation <; reduces to the trivial relation precisely on strictly
convex spaces.

In the remainder of this section, < will be an order relation of Alfsen-
Effros type on a Banach space K.

2.3. Definition. The centralizer associated with < is the set Z((K)
of all linear operators U on E for which there exist a, b € R, (depending
on U) such that U(u) + au < bu for every u e K.

2.4 Definition. A projection P on E is said to be a < — Cunnin-
gham projection (or, simply, < — projection) provided that Pu < w for
every u € E.

2.5 Definition. A subspace of E is called a < — summand provided
that it is the image of a < — Cunningham projection.

The predecessors of the concepts introduced by Definitions 2.3 —2.5
are the concepts corresponding to the situations < = <, and < = <,
first considered by Cunningham and Alfsen and Effros. See [1] for a
complete story. The study of the above concepts in the abstract setting
of an arbitrary Alfsen-Effros type order relation was initiated by the
first author in [10].

We recollect here, without proofs, some facts connected with centra-
lizers. See [12], [13] for details.

Recall that an f-algebra is a vector lattice A endowed with a struc-
ture of algebra such that A, - A, < A, and the relation a A = 0 implies
ac A b =ca A b= 0 for any ce A,. Any Archimedean f-algebra is asso-
ciative and commutative.

The set Z((FE) is an algebra of bounded linear operators. The subset
Z (B), of Z ((E) formed by those U for which the constant @ in Definition
2.3 is equal to 0 is a cone in Z ((E) such that the order relation defined by
it endows Z ((E) with a structure of Archimedean f-algebra. The map 1,
is a strong order unit for Z ((E) and the norm associated to this strong
order unit coincides with the operator norm on Z((E). Consequently,
Z ((E) is a commutative Banach algebra.

2.6 PROPOSITION. (See [13]). Z((E) is an order complete f-algebra
provided that there exists a linear topology = on E such that every < —de-
creasing net has a greatest lower bound and © — converges to il.

In the case when E is a Banach lattice] and < = <,, Z((E) coin-
cides with the usual lattice-theoretic centralizer of E, i.e., the set of those
linear operators U on E satisfying |U(u)| < aju| for all e E, with
a € R, depending only on U.
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The ' < ~ Cunningham prajections. are precisely  the idempotents

in Z4(F); in particular; all of them’ commute. The set [P ((B) of all such
projections constitutes - a Boolean alzebra of projections if we put . ;

PVQ=P+¢ P
P A Q= Pg,

peoltiagps arbsioeginger ot wor
. Given a € — summand F of E, ‘the amannentary s_ubspacs FL of
F is defined as the set . v

e e B, [0,u]n F =0} ;

here and éléoﬁvheré, '[u,' v} denotes as ‘usually  the (:.—\—,or'dé‘i' interval
wwek, u <w < v}. A useful remark is that if P is a Projection, then

(Im P)t = Im Pt = Ker P.

For K a von Neumann algebra and < = <,, the Cunningham pro-
jections ave the central projections on the w'-closed two sided algebraical
ideals. See: [1].. .. .{ , : , e

For E a Banach lattice and < = «,, the Cunningham projections
are the band, projections. See: [11]. .~ &11

3. VECTOR NORMS

3.1. Definition. Let B be a vector space. A vector norm on E is & map
g defihed on E with valies in a vector lattice X, satisfying the following
requirements a4 ‘ ¢

i) ¢(w) = 0 for every ue E; o(u) = o iff u = 0.

ii) o(au) = {a| - p(u) for every a e R, w€ E (every ae € if Eis a
complex veector space). D

iii) o(w + v) < o(u) + o(v) for every u, v € K.

It B-is a Bahach space, X is a Banaeh lattice and ‘¢ dSatisfies in
addition ' : ‘ rd
1Y) [l o(w) || = fu|| for every we B,

then ‘o 'is' called an- dsometric: vector norm.

3.2. Definition. (L. V. Kantorovich). A vector norm e: E - X s
said to have the Riesz decomposition property provided . that for every
weE and every m,, @ € X, with g(u)< @; + @y there are u,, u; € F suc
that w = w; + u, and. o(w,) < @, o(u,) < @y ; ks ;

For latter purposes we record here the following lemma :

3.3 LmmmA. Let E be a wvector space, X am order complete vector
lattice, U:E — X a linear map and P, P,: E - X sublinear maps
Such that Uw) < Py(u) 4 Pytu) for every., we E. Thenthere are linear maps
Uy Uy B~ X such thai U.= U, + U, ond Ulw) < Pfu) for every
u € B,ie{l,2}. e
. 1o Proof. Consider the sublinear map P : B x F — X given by P(u,,u,)=
(= Py(u;) + Py(us). Let D = {(u, u)|u € KE}. The map V:D —» X given

3 — c. 2365
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by V(u, w) = U(u) satisfies ' V(u, u) < Py, u) - for every (u,u)e D. Con-
sequently, the operatorial version of the Hahn-Banach theorem (see [5H])
page 248) alfows us to extend V to a lincar map, denoted again by V, defi-
ned on the whole Bx E and satistying V(w, u,) <P(u,, uy) for every
(g, ;) € E x E. The maps Uy, U, defined by U,(u) = Vu, 0), Usu)=
= V(0, %) have all the required properties. @

We indicate now some representative examples of vector norms
having the Riesz decomposition property (abbreviated, RDP).

3.4 Example. The R — valued vector norms are preeisely the usual
norms. Clearly, any such a norm has the RDP.: '

3.5 Example. It E is a vector. lattice, the map o: E — E given by
o(u) = |u| is a vector norm. The classical Riesz decomposition property
for vector lattices means precisely that ¢ has the RDP.-

3.6 Example. Let E be a Banach space and let ‘X be an order com-
plete vector lattice. A linear operator U: 1 — X is called majorizing if
U(Bg) is order bounded in X. The set of all majorizing operators from
E to X is a vector space, denoted by M(F, X). The map p : MK, X) > X
given by u(U) == sup U(B,) is a vector norm having the RDP. To see
this, let w(U) < @, + x5 Lemnma 3.3 applied to the linear map U and to
the sublinear maps P;, P,: # — X given by Pi(u) = |ju -2 (tedl,2})
yields the linear maps U,, U, such that U = U, 4 U, and Uj(u) < fjul}-
-z (we B, ie{l,2}). Itfollows that Use M, X) and p(U;) < @

Suppose now that X is a Banach lattice and define the norm || |l
on M(E,X) by | Uly = (U]l Endowed with this norm, M(E, X)
becomes a Banach space and p becomes an isometric vector norm.

3.7. Example. Let E be a Banach space and let X be a veetor lattice.
A linear operator U : X — B is called cone summable it for every x € X, we
have

(1) sup { ¥l U@)| ln>1,zeXy, ¥ &= w}<oo.
t=:1 =1

The set of all cone summable operators from X to K is a vector space,
denoted by 8. (X, E). For every U e S, (X, E),let o(U)x be the supremum
of the set in (1). The map = — o(U)z (x € X, ) can be extended by linearity
to & positive linear form on X, denoted by o(U). We have thus obtained
a vector norm o : S, (X, E) » X7, where X~ denotes the vector lattice of
all order bounded linear forms on X.

If E is » dual Banach space, then o has the RDP. This can be seen
as follows : let I be a predual for E, i.e., E = F'. To every U € 8,(X, E)
we associate U € M(F, X~) by U(v)#) = U(z)(v). The correspondence
U — T establishes a bijection between S, (X, E) and M(F, X™) such that
w(0) = o(U); it remains to use Example 3.6 in order to conclude the
proof.

Suppose now that X is a Banach lattice and define the norm || ||s
on S.(X,E) by || Uls=ll s(U). Endowed with this norm, S.(X, H)
becomes a Banach space and o becomes an isometric vector norm.

3.8. Example. Let E be a Banach space and let X be a Banach
lattice ; we underline that X need not be order complete. Let M (E', X)
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be the space of all linear operators U : B’ — X satisfying the following
requirements : )

iy U'(X") =« Fx(B).

ii) There is an x € X, such that U(Bg/)is contained in X, and is
totally bounded for || ||,.

It is well known that the supremum of a totally bounded set in a
Banach lattice with strong order unit always exists. Consequently, for
every U e M, (F’, X) it makes sense to consider the element u(U) = sup
U(Bg/) of X. We have thus defined a vector norm u: M (E', X) - X.
With respect to the norm || [l given by || Uy = || n(U)|, M (B, X)
becomes a Banach space and ;. becomes an isometric vector norm.

The vector norm y has the RDP. Indeed, as every order ideal X,
is order isomorphic and isometric to a space C(K), it suffices to prove our
assertion only in the case X = CO(K). But in this situation, for every
Ue M (ECK)) thereis a continuous map F:K — E such that U(u)(t) =
w(F(t)) for every weE' and teK. The hypothesis w(U) < @, + a,
means that ||F(t)|| < xy(t) + 2,(t) for every t e K. Define the continuous
maps F;: K — Eby '

Fi(t) = (21(8) + @5(1)) 71 @w(O)F(8), it x,(8) + a,(t) >0
Fit) =0 , it @y (t) - ay(t) = 0

or ie{l,2}. The operators U,e M, (E’, C(K)) given by Uju)(t) =
= u(Fy(t)) (v € {1;2}) satisfy al the requirements in the definition of the
RDP.

The importance of the Banach space M,(E’, X) lies in the fact
that it is isometrically isomorphic to the M-tensor product E® ,X. See [4]

The interest in vector norms with the RDP is justified by the possi-
bility of dualizing such norms. Indeed, given the Banach space E, the
Banach lattice X and the isometric vector norm ¢ : £ — X with the RDP,
a dual vector norm ¢’ : E’ — X’ can be defined by

¢'(w')(@) = sup [w'(u)]
Plu)<x

for every w’ € B’ and x € X, ; the map o’(u’) : X, - [R, is positively homo-
geneous and additive (because of the RDP) and thus extends uniquely
to a positive linear form on X, also denoted by o’(w’). It is clear that
¢’ is a vector norm: in fact, we have

3.9. PROPOSITION. ¢’ 48 an 1sometric vecior norm with the RDP.

Proof. The fact that ¢’ is isometric is straightforward ecalculation,
Indeed,

lle'(w)[l = sup ¢'(w')() = sup sup [w'(u)| = sup |w'(w)| =[]
ll’;!KOl H’;Hfol Pluj<x full<t

To see that ¢’ has the RDP, let o(u') < #; 4 ;. Equivalently,
w'(w) < wj(e(u)) + wx(p(u)), u e B.

By applying Lemma 3.3 to the linear form %’ and to the sublinear forms
w — zi(e(u)) (¢ €{l,2}), weobtain the linear forms w, such that w,(u) <
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< riou))(ue E,ie{l,2}) and u = U + Uy Hence ¢'(w;) < ) and the
proot is complete. B -

Proposition 3.9 allows us in particular to consider ¢, " and so on.
We have the following canonical relation between ¢ and o' :

3.10. ProrosirioN. Let ¢ : B - X be an isometric  vector norm
having the RDP. Then

a'(p(u)) = sup |u'(w)]
@f (u) <’

for every uwe E and z' € X',. In other words, ¢"'(Fx(u)) = I x(o(u)).

Proof. The map v — @'(o(u)) is a seminorm on K and the set of linear
forms majorated by it is precisely {u'|u’ € E', ¢'(u') < a'}; thus, our
assertion is a consequence of the Hahn-Banach theorem. ll

Examples of duality

The duals of the [R-valued vector norms are the usual dual norms.

The dual of the vector norm u — || on & Banach lattice E is the
vector norm %’ — |u’| on E’.

The dual of M, (E’, F) can be isometrically identified with S, (¥, E").
When this identification is performed, one can show, by using the techni-
ques in [4], that the dual norm of the vector norm u on M, (E’, F) is the
vector norm o on S.(F, E').

4. THE RELATIONS < o AND <0 AND THEIR DUALITY

Throughout this section, E will denote a Banach space, X a Banach
lattice and ¢ : E — X an isometric vector norm. Whenever o’ will be con-
sidered, it will be understood that ¢ has the RDP.

4.1. Definition. The relation <, on E is defined by
u <, v iff o(v) = o(u) + v — ).
The relation <, on E is defined by
u <y v iff 9w 4 w) < p(w) v 9w + )
for every we E.

4.2. PROPOSITION. <o and <, are order relations of Alfsen-Effros

type.

Proof. The verification of conditions i)—iv) in Definition 2.1 for
<1, 18 quite elementary. For instance, the verification of iv) needs only
the triangle inequality. Indeed, we have by hypothesis

o(vy) = () + (v — W), el 2}
and
o(vy + v,) = o(v;) + (vy).
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Then
P(v, + 1) < (v + vy — Uy — Up) + P(Uy + Up) <
< (e — wy) + o) + 2y — Ug) + 9(Uy) =
= (1) + @(vy) = (v, + v,),

which implies that u, 4 4, <L v, + v and w;, <., U + s

The fact that <, , satisfies all conditions in Definition 2.1 except
for iv) is also straightforward. The verification of iv) is reduced to the
scalar case and proceeds as follows. We have by hypothesis wu; <, .0
(1€ {1, 2}) and v; <y 0+, Given we E, wehave to prove that o(w-+u;) <
< ow) VvV o(w 4+ Uy + u,) and glw + u. + Uy) < gp(w) vV pw vy 4 v,).
Let » = o(w) + o(u;) + 9(ug) + ¢(vy) + 2(v). As ¢(u;), 2(v;) and o(w)
all belong to .V, (i € {1, 2}) and X is order isomorphic to a space C(I), all
we have to prove is that the relations

(2) 3w + uy)) < max {3(p(w)), d(p(w + wu + uz))}
(3) 3w + uy + ug)) < max {3(g(w)), 3(p(w + v + v,))}

hold for any lattice homomorphism 3 : X, — [R. To this purpose, let 3 be
any such lattice homorphism and consider the seminorm p on F' = o~}(X,)
given by p(u) = 3(¢(u)). The hypothesis yields that T'(w;) < T(v:)(7 € {1,2})
and Tv, <, Tv, 4+ Tv, in (K, p), where T': F — (F, p) denotes the cano-
nical map. Consequently, we also have

(4) T(uy) <p Tuy) + T(uy)
and ‘
(5) T(uy) + T(uy) <5 T(vy) + T(v,).

Now recall that the definition of <, makes use of an element which runs
over the whole space; by taking T(w) as that element in (4) and (5), one
obtains precisely (2) and (3).H

For o(u) = |||, thenorm of E, we have <, , = < and <y, = <.

For E a Banach lattice and ¢(u) = |, the modulus of K, we have
<. = <yo = <,; see Proposition 2.2.

We leave as an open problem the study of the relations <, and
<y, and of the concepts associated with them in the situation when o
is one of the vector norms defined in Examples 3.6—3.8.

The centralizer associated with <, , (respectively <, ) will be
denoted by Z ,(E) (respectively Z, . (E)).

4.3. ProposiTiON. Let U be a bounded linear operator on E. Then

4

UeZ,(B) (respectively Zy o(E)) if and only if U eZy(E") (respec-
tively Z; ,(E")).

Proof. Suppose first that U e Z; ((E). Without loosing generality,
we may assume that 0 < U < 1z in Z; ,(F). Let w’, w' e E' and ue E
be given. By hypothesis we have o(u) = ¢(Uu) + ¢(u — Uu). The ine-
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quality
(w' + Un)u) =w(uw — Uu) + (w + w')(Uu) <
< @'(w')(e(w — Uu)) + ¢'(w" + u')(o(Uu)) <

< (p'(w') v @'(w" + w))(e(w))
shows, by taking suprema, that
o'(w + Un') < ¢'(w) v ¢'(w + u'),
which means that U'(u') <, %', a8 w’ was arbitrary. Hence U’ € Zy o (E’).
Now suppose that U'cZy,(H); as above, we may assume that
0 <U <1, Let v € E' and v, w € E be given. We have
(U'nw)w) + (uw — Tuw)w) = uw(Uv+w— Uw) <

< o' (W)(p(Tv +w — Tw)) < o' (w)(2(v) v o(w))

o(Uv +w — Uw) = ¢w + U(v — w)) < o(w) v ¢(v)

by hypothesis. By taking the appropriate suprema we obtain ¢'(U'u’) +
+ o'(u’ — U'w') < o'(w'). As the reverse inequality ¢'(u’) < ¢'(U'n’) +
+ o'(w — U'n’) is always true, we obtain that U'u’ <, u’, hence

U’ € Z; ().

Finally, if U’ € Zy ,(E') (respectively Zy o(E")), then U" e Zy, (E")
(respectively Zy .~(E’')) by what have just been proved. Taking into ac-
count Proposition 3.10 we conclude that U € Z,, o(E) (respectively Zyo(E))-1

4.4. COROLLARY. The map U — U’ i3 an isometric, algebraic and lat-
tice homomorphism, of Z; E) (respectively Zyo(E)) into Zyy(E') (res-
pectively Z, ,(H')).

Proof. The fact that the map under consideration is well defined
follows from Proposition 4.3. The lattice homomorphism part follows by
combining the next two remarks. First, it was shown during the proof
of Proposition 4.3 that the map U — U’ takes Z;,(E), (respectively
Zuo(E),) into Zy ,(E'), (respectively Z, ,.(E’),). Second, in every Archi-
medean f-algebra with unit, the relation aAb =0 is equivalent to:
@ >0,b>0and ab=0.1

4.5. ProposITION. For every projection P on E the following are
equivalent :

i)y P 18 an <, — projection.

ii) o(v 4+ Pu) < o(v) v o(v + u) for every u, ve E.

iii) o(u) = ¢(Pu) v o(u — Pu) for every uec H.

Proof. Clearly, i)«ii) and iii)=sii). ‘

ii)=iii). Notice first that ¢(Pu), e(u — Pu) < ¢(u) for every u € E.
On the other side,

¢(Pu + (I — P)) = 9(v + Plu — v)) < ¢(v) v o (4)
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for every u,ve E, which implies
o) = o(P2u + (I — P)*u) < o(Pu) v o(u — Pu)
for every uc E. R

4.6. PROPOSITION. Zy o(E') and Zy s(E') are order complete f-alge-
bras.

Proof. Let < be one of the relations <, and <, .. By Proposi-
tion 2.6, it suffices to show that every < — decreasing net has a greatest
lower bound and w’ — converges to it. The latter fact can be obtained via
standard arguments if we prove that every < — order interval [u’, v']
is w' — closed (and hence, w’ — compact). By condition iv) in Definition
2.1, [w,v'] =% + [0,v" — w']; in order to conclude the proof it remains
to remark that the lower semicontinuity of each map 2’ — ¢'(z')(2) (z € X,)
implies that [0, ¢ — u'] is w’ — closed. W

We shall introduce now the notion of an ideal.

4.7. Defimition. An <, , — ideal (respectively an <, ,— ideal)
of E is a closed subspace I of E with the property that the polar I° of
I is an <, , — summand (respectively an < Le — Summand) in FE’.

The terminology is motivated by the case when < = <, first
treated by Alfsen and Effros [1]. They noticed that the <, — ideals of
a C* — algebra are precisely the norm closed two sided algebraical ideals.

The case < = <, is cobsidered below.

4.8. ProposITION. Let B be a Banach lattice and let I be aclosed
subspace of K. Then the following assertion are equivalent :

i) I is an <, — ideal.
ii) I is an order ideal, t.e., |y| < |z| and z eI imply y<I.
Returning to the abstract setting described at the beginning of this

section, let us establish the conditions that must be satisfied by an ideal
in order to be a summand.

4.9. PropositioN. Let I be an <., — ideal (respectively an
<y o — tdeal) in E. Then the following assertions are equivalent :
i) I is an <,, — summand (respectively an <y p —summand).
ii) The Cumningham projection associated with 1° is w’'— continuous.
iii) I°L is w’—closed.
iv) For every w e E there is a v e I such that u'(u) = u'(v) for every
u el°L. ‘
Proof. First of all, denote by @ the Cunningham projection onto I°
and remark that I°t = Ker Q.
k i) = iv)."Denoting by P the Cunningham projection onto I, we have
Q = (1 — P)’ by Proposition 4.3. Consequently, for every ' e I°L and
« € E we have

w'(u) = u'(Pu) + w' (% — Pu) = u'(v)



C. P. NICULESCU and D. T. VUZA 12

~1
=23
[\

with v = Pu e I.

iv) = iii). Let wseI°t, ug Z s w’. To prove that u’ e I°L, take any
w e E. By hypothesis, there is a v eI such that 2'(w) = 2'(v) for every
2 eI°t. As uj and w' — Qu’ belong to I°, it follows that

w'(u) = lism uz(u) = li;n ug(v) = u'(v) =

= (Qu')(v) + (v — Qu')(v) = (u' — Qu')(u).

Hence, (Qu')(u) = 0; as w was arbitrary, w" e I°t.
iii)=ii). Follows from the well known fact that a bounded projec-
tion P on E’ is w’—continuous iff Im P and Ker P are w’—closed.
ii)=>i) Follows from Proposition 4.3. 1

5. A SITUATION WHEN ALL <, — SUMMANDS ARE w’-CLOSED

A result due to Cunningham, Effros and Roy [7] asserts that every
<,-summand in a dual Banach space B’ is w'-closed ; consequently, every
<;—ideal in E is an <;— summand.

On the other side, every (projection) band in the dual of a Banach
lattice with order continuous norm is w’-closed ; this fact was first noticed
by Luxemburg and Zaanen. See [14].

It is the purpose of this section to bring together both of the above
mentioned results, by deriving them as corollaries from the more general
theorem stated below.

Throughout the section, E will be a Banach space, X 2 Banach lat-
tice with order continuous morm and ¢ : E — X an isometric vector norm
with the RDP.

5.1 THEOREM. Every < ,—summand in E' 18w’ —closed.

Proof. Let I be an <,; ,—summand in E’ and let P be the Cunnin-
gham projection onto I. In order to prove that I is w’ —closed it suffices

to show that u’ € I whenever uz € I, u{;—w—> uw’ and sup ||us||<< oo; see [9]

But wu; — Pu’ i> w — Pu',u's — Pu' eI and ' — Pu’ € Ker P; hence
we may assume from the beginning that u’ € Ker P and we have to prove
that v’ =0

Denote by f the positive linear from ¢'(u’) on X. In order to see thab
f = 0 it suffices to show that the carrier S, of f, i.e., the disjoint comple-
ment of the set {x|x € X, f(|z|) = 0}, is reduced to {0}. This is so because
f is order continuous; see [6].

So, let z €8, n X, and >0 be given. Put M = sup ||usll. As the

]

norm of X is order continuous, there is an f, € X', such that (g — f.).(#) <e
whenever ge X’ and ||g|| < M. See [8].

For every neIN we have

(6) o' (uj + nu') = @'(uy) v n@'(w') = @'(uz) v nf.
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But
9'(ug) = 9'(ug) A fo 4 (9" (ug) — fo)ey
(7) o' (uz) vaf < (f. 4 (9'(wg)— f)) v (nf + (9'(us) — fo)i) =
| =f. v nf + (9'(u) — fo)s-
It follows from (6), (7) and the inequality || ¢'(ug)| < M that
(8) o' (us + nu')(z) < (f. v nf)(@) + e
The function 2’ — ¢’(2')(x) being lower semicontinuous, we obtain from (8),
1+ n)f(x) = o' (w + nu')(@) < (fe v nf)(2) + =
For every ne[N there is an x, € [0, ] such that

fe@,) + nf(e — @) > (fe v nf)(@) — e

Consequently,
1+ ")f(w) < fs(xn) + nf(m — @,) + 2¢
and finally

for every » € [N. We shall derive from (9) the inequality f(x) < 2¢; a8 ¢
was arbitrary and x was in S;, this will conclude the proof of the fact that
f, and hence u’, are equal to 0.

Indeed, if f.(#,)—nf(x,)<< 0 for some #, then f(x)<2¢. Let us therefore
suppose that f.(x,) — nf(x,) > 0 for all n. As [0, ] is weakly compact as
being an order interval in a Banach lattice with order continuous norm
(see [6], [14], [15]), we may assume, by passing if necessary to a subse-

quence, that x, — y € [0, ] weakly. From 0 < f(z,) < —1— fe(x) it follows
n

that f(y) = 0;as [0, 2] = Sy, the latter equality implies that y = 0. Hence
f.(z,) — 0 and the conclusion follows from the relation

f(’L') < fa(wn) - nf(mn) + 2e < fs(wn) + 2e. n
5.2. COROLLARY. Every <, ,—tideal in E is an <, ,— summand.

5.3. COROLLARY. The map U — U’ 8 an tisometric, algebraic and
order isomorphism of Zy o(E) onto Zy ,(E’). '

Proof. Let A denote the image of Z, ,(E) under the map U — U".
As the f-algebra Z, ,(E’) is order complete by Proposition 4.6, it is the
closed linear hull of the set of its idempotents, i.e., the <, ,-projections.
As A is closed and contains all <, .-projections by Theorem 5.1, it
follows that A = Zy ,(E'). B

The results mentioned at the beginning of this section are respecti-
vely derived as particular cases of Theorem 5.1 by taking ¢ to be the
norm of a Banach space, respectively the modulus of a Banach lattice
with order continuous norm.
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6. <-SUMMANDS AND WEAK SEQUENTIAL COMPLETENESS

A classical result due to Lozanovskii [14] asserts that if a Banach
lattice E has the property that .#,(E)isaband in E’’, then E is weakly
sequentially complete.

A more recent result due to Behrends [3] asserts that if a Banach
space I/ has the property that f,(F)is an < ,-summand in E'’, then ¥
is weakly sequentially complete.

It is the purpose of the present section to show that our general
theory allows to bring together the above couple of results. The proof
relies on two lemmas, which borrow some ideas from Behrends [3]. We
note that unlike in [3], no appeal is made to the principle of local refle-
xivity.

Given a topological space K, a function f: K — [R and a point
1 e K, we denote by L,(?) the intersection of all sets f(V') (i.e., the closure
of f(V)), where V runs over all neighborhoods of ¢ in K.

6.1. LEmMmMA Let B be a Banach space and let u'' € E'' be such that
(10) law” + )| = la] -[lu"] + ull

Jor every a € R and w € E. Denote by f the restriction of u'’ to the topological
space Bg., endowed with the w'-topology. Then L, (w') =[ —|u"|l, ||w"|l]
for every u' € Byg..

Proof. Clearly L,u') < [—||w" ||, |»"'||]]. For the reverse inclusion,
let ae[—|w'|, |w”||], let V be a beighborhood of ' in By and let
>0 be given. There are »>0 and u,,..., u, € E such that

(11) {v'|' € By, |0'(w) — w/(w)| < m,1 <i<m}c V.

Define g: Ru"”’ + S£:(E) - R by glbu'"' + Fi(u)) = ab + u'(u).
‘We have

lg(bu” + Fp(u))| < fa|-|b] 4 |w'(w)] ~ 10]-||u”|| + [Jull =
= ||bu” 4 Sp(u) ||

by (10), hence g has an extension of norm at most 1 to %’’, again denoted
by ¢. As I5/(Bg/) i8 w'-dense in Bg., there is a v’ € By ~uch that

a2) lg(u'") —u""(v')|<e
and
(13) | g(Fsus)) — v'(w)|<n, 1 <& < m.

But g(Sx(w;))=u'(u,) ; hence (11) and (*3) imply that v" € V. As g(u"") = a
and >0 was arbitrary, it follows from (12) that a € f(V). As V was arbi-
trary, ae L;(u'). m

6.2. LEMMA. Let E be a Banach space, let (u,), ¢ E and let u'’' € E"'
be such that JE(u,,)'i,-»u” and (10) holds for every a € R “ndu € E. Thenu”" = 0.
Proof. Let f be the restriction of 4’’ to the compact space (for the
w'-topology )l Br/. The fact that #(u,) 2w implies that fis a function
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of first Baire class, hence the set of points u’ € B, at which f is continuous
is nonvoid. At every such point «’ we must have Ly(uw') = {f(u')} ; conse-
quently, Lemma 6.1 gives ' = 0. @

6.3. THEOREM. Let E be a Banach space, X a Banach lattice and
¢ : B — X an isometric vector norm with the RDP. Suppose that S e(E) ts
an < g-summand in E". Then E is weakly sequentially complete.

Proof. Let (u,), =« F be a weak Cauchy sequence. There is u'’' ¢ B’
such that f,(u,)—> w’”’. Denoting by P an <1 o -projection onto 5 ,(E),

we have S (u,) — Pu'’ —> u'’ — Pu", Fp(u,) — Pu' eF(E) and u"
— Pu’’ € Ker P. Hence, it may be assumed from the beginning that u'’
Ker P; the proof will be concluded by showing that u'' = 0.

To this purpose, let fe X, and let p be the seminorm on E given
by p(u) = f(¢(u)). Denote by F the Banach space (E,p)and by T: E - F
the canonical map, which is a bounded operator. Consequently,

(14) I Tuy) s Tu,

A straightforward computation shows that

(15) ” TII/UII” — @//(vn)(f)

for every v e E". The relation u'’ € Ker P implies

(16) ?(au” + Fx(u)) = |a]: 9"(u") 4 9"'(Fx(u))

for every a e R and u € E. Combining (15) with (16) we obtain
(17) laT"w’ + £ (Tu)| = [a]- || T || + || Tul|

for every ¢ € R and w € E. Taking into account (14), (17) and Lemma 6.2,
it follows that 7"’(uw’’) = 0, that is, ?”’("”)(f) = 0 by (15). As f was arbi-
trary in X’,, we infer that '’ = 0 and the proof is complete. &
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